Вавилова ТП. Биохимия тканей и жидкостей по- лостей рта: учебное пособие. М.: ГЭОТАР-Медиа, 2008: 208. Vavilova TP. Biohimija tkanej i zhidkostej polostej rta: uchebnoe posobie. M.: GjeOTAR-Media, 2008: 208 [In Russ].
Greene GW, Banquy X, Lee DW et al. Adaptive mecha- nically controlled lubrication mechanism found in arti- cular joints. Proc. Natl. Acad. Sci. USA. 2011; 108 (13): 5255–5259. doi: 10.1073.
Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthri- tis Rheum. 2012; 64: 1697–1707. doi: 10.1002.
Fitzgerald J. New insights into articular cartilage rege- neration. Semin. Cell Dev. Biol. 2016; S1084-9521 (16): 30122–30127. doi: 10.1016.
Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z. Tis- sue engineering stratified scaffolds for articular cartila- ge and subchondral bone defects repair. Orthopedics. 2013; 36 (11): 868–873. doi: 10.3928.
Barnabe C, Bessette L, Flanagan C, Leclercq S, Stei- man A, Kalache F et al. Sex differences in pain scores and localization in inflammatory arthritis: a systematic review and metaanalysis. J. Rheumatol. 2012; 39 (6): 1221–1230. doi: 10.3899.
Grønning K, Midttun L, Steinsbekk A. Patients' con- fidence in coping with arthritis after nurse-led educa- tion; a qualitative study. BMC Nurs. 2016; 15: 28. doi: 10.1186.
Hoenig E, Leicht U, Winkler T, Mielke G, Beck K, Pe- ters F et al. Mechanical properties of native and tissue- engineered cartilage depend on carrier permeability: a bioreactor study. Tissue Eng. Part A. 2013; 19 (13–14): 1534–1542. doi: 10.1089.
Schindler OS. Current concepts of articular cartilage re- pair. Acta Orthop. Belg. 2011; 77 (6): 709–726. PMID: 22308614.
Советников НН, Кальсин ВА, Коноплянников МА, Муханов ВВ. Клеточные технологии и тканевая инженерия в лечении дефектов суставной поверхнос- ти. Клиническая практика. 2013; 1: 52–66. Sovetni- kov NN, Kalsin VA, Konoplyannikov MA, Mukhanov VV. Сell technologies and tissue engineering in the treat- ment of articular chondral defects. Klinicheskaja prakti- ka. 2013; 1: 52–66 [In Russ, English abstract].
Oussedik S, Tsitskaris K1, Parker D. Treatment of arti- cular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic re- view. Arthroscopy. 2015; 31 (4): 732–744. doi: 10.1016.
Keeling JJ, Gwinn DE, McGuigan FX. A comparison of open versus arthroscopic harvesting of osteochondral autografts. Knee. 2009; 16 (6): 458–462. doi: 10.1016.; Brittberg M. Autologous chondrocyte implantation – technique and long-term follow-up. Injury. 2008; 39: S40–S49. doi: 10.1016.
Madeira C, Santhagunam A, Salgueiro JB, Cabral JM. Advanced cell therapies for articular cartilage regene- ration. Trends Biotechnol. 2015; 33 (1): 35–42. doi: 10.1016.
Shen Y, Fu Y, Wang J, Li G, Zhang X, Xu Y et al. Bioma- terial and mesenchymal stem cell for articular cartilage reconstruction. Curr. Stem. Cell Res. Ther. 2014; 9 (3): 254–267. PMID: 24524788.
Ashraf S, Bouhana KS, Pheneger J, Andrews SW, Walsh DA. Selective inhibition of tropomyosin-recep- tor-kinase A (TrkA) reduces pain and joint damage in two rat models of inflammatory arthritis. Arthritis Res. Ther. 2016; 18 (1): 97. doi: 10.1186.
Kreuz PC, Müller S, Erggelet C, von Keudell A, Ti- scher T, Kaps C et al. Is gender influencing the biome- chanical results after autologous chondrocyte implanta- tion? Knee Surg Sports Traumatol Arthrosc. 2014; 22 (1): 72–79. doi: 10.1007.
Petri M, Broese M, Simon A, Liodakis E, Ettinger M, Guenther D et al. CaReS (MACT) versus microfracture in treating symptomatic patellofemoral cartilage de- fects: a retrospective matched-pair analysis. J. Orthop. Sci. 2013; 18 (1): 38–44. doi: 10.1007.
Wylie JD, Hartley MK, Kapron AL, Aoki SK, Maak TG. What is the effect of matrices on cartilage repair? Clin. Orthop. Relat. Res. 2015; 473 (5): 1673–1682. doi: 10.1007.
Stoltz JF, Huselstein C, Schiavi J, Li YY, Bensoussan D et al. Human stem cells and articular cartilage tissue engineering. Curr. Pharm. Biotechnol. 2012; 13 (15): 2682–2691. PMID: 23072395.
Shahin K, Doran PM. Strategies for Enhancing the Ac- cumulation and Retention of Extracellular Matrix in Tissue-Engineered Cartilage Cultured in Bioreactors. PLoS One. 2011; 6 (8): e23119. doi: 10.1371.
Mabvuure N, Hindocha S, Khan WS. The role of biore- actors in cartilage tissue engineering. Curr. Stem. Cell Res. Ther. 2012; 7 (4): 287–292. PMID: 22563665.
Chen HC, Lee HP, Ho YC, Sung ML, Hu YC. Combina- tion of baculovirus-mediated gene transfer and rotating- shaft bioreactor for cartilage tissue engineering. Bioma- terials. 2006; 27 (16): 3154–3162. PMID: 22563665.
Frisch J, Venkatesan JK, Rey-Rico A, Madry H, Cucchi- arini M. Current progress in stem cell-based gene therapy for articular cartilage repair. Curr. Stem. Cell Res. Ther. 2015; 10 (2): 121–131. PMID: 25245889.
Chen HC, Chang YH, Chuang CK, Lin CY, Sung LY, Wang YH et al. The repair of osteochondral defects using baculovirus-mediated gene transfer with de-diffe- rentiated chondrocytes in bioreactor culture. Biomateri- als. 2009; 30 (4): 674–681. doi: 10.1016.
Strioga M, Viswanathan S, Darinskas A, Slaby O, Mich- alek J. Same or not the same? Comparison of adipose tissue derived versus bone marrow-derived mesenchy- mal stem and stromal cells. Stem. Cells and Develop- ment. 2012; 21 (14): 2724–2752. doi: 10.1089.
Деев РВ. Анализ рынка клеточных препаратов для коррекции патологии скелетных тканей. Клеточная трансплантология и тканеваяинженерия. 2006; 2 (4): 78–83. Deev RV. Market analysis of cell prepa- rations for correction of the pathology of the skeletal tissues. Cell Transplantology and Tissue Engineering. 2006; 2 (4): 78–83 [In Russ].
Redman SN, Oldfield SF, Archer CW. Сurrent strategies for articular cartilage repair. European Cells and Mate- rials. 2005; 9: 23–32. PMID: 15830323.
Gabrion A, Aimedieu P, Laya Z, Havet E, Mertl P, Gre- be R et al. Relationship between ultrastructure and bio- mechanical properties of the knee meniscus. Surg. Ra- diol. Anat. 2005; 27 (6): 507–510. PMID: 16308664.
Madry H, Luyten FP and Facchini A. Biological aspects of early osteoarthritis. Knee Surg. Sports Traumatol. Ar- throsc. 2012; 20 (3): 407–422. doi: 10.1007.
Sanjurjo-Rodríguez C, Martínez-Sánchez AH, Hermida- Gómez T, Fuentes-Boquete I, Díaz-Prado S, Blanco FJ. Differentiation of human mesenchymal stromal cells cultured on collagen sponges for cartilage repair. Histol. Histopathol. 2016; 31 (11): 1221–1239. doi: 10.14670.
Spees JL, Lee RH, Gregory CA. Mechanisms of mesen- chymal stem/stromal cell function. Stem. Cell Res. Ther. 2016; 7 (1): 125. doi: 10.1186.
Margeret RW, Gangadhar MU, Holly AL, Jeremy LC, Charles ES, Moorman CT et al. High body mass index is associated with increased diurnal strains in the articu- lar cartilage of the knee. Arthritis & Rheumatism. 2013; 65 (10): 2615–2622. doi: 10.1002.
Bhosale AM, Richardson JB. Articular cartilage: struc- ture, injuries and review of management. Br. Med. Bull. 2008; 87: 77–95. doi: 10.1093.
Loeser RF. Integrins and chondrocyte-matrix interac- tions in articular cartilage. Matrix Biol. 2014; 39: 11– 16. doi: 10.1016.
Vanden Berg-Foels WS, Scipioni L, Huynh C, Wen X. Helium ion microscopy for high-resolution visualiza- tion of the articular cartilage collagen network. J. Mi- crosc. 2012; 246: 168–176. doi: 10.1111.
Muzzarelli RA, Greco F, Busilacchi A, Sollazzo V, Gi- gante A. Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a re- view. Carbohydr. Polym. 2012; 89 (3): 723–739. doi: 10.1016.
Fisher SA, Tam RY, Shoichet MS. Tissue mimetics: engi- neered hydrogel matrices provide biomimetic environ- ments for cell growth. Tissue Engineering. 2014; 20 (5, 6): 895–898. doi: 10.1089.
Севастьянов ВИ, Перова НВ. Инъекционный гетеро- генный биополимерный гидрогель для заместитель- ной и регенеративной хирургии и способ его полу- чения. 2011; Патент РФ № 2433828. Sevast'janov VI, Perova NV. In#ekcionnyj geterogennyj biopolimernyj gidrogel' dlja zamestitel'noj i regenerativnoj hirurgii i sposob ego poluchenija. 2011; Patent RF № 2433828.
Соловьева ИВ, Шестерня Н, Перова НВ, Севастья- нов ВИ. Комбинированное применение биополимер- ного гетерогенного гидрогеля и гиалуроновой кис- лоты при ОА (первый опыт). Врач. 2016; 1: 12–17. Solov'eva IV, Shesternja N, Perova NV, Sevast'janov VI. Kombinirovannoe primenenie biopolimernogo getero- gennogo gidrogelja i gialuronovoj kisloty pri OA (per- vyj opyt). Vrach. 2016; 1: 12–17 [In Russ].
Федяков АГ, Древаль ОН, Севастьянов ВИ, Перо- ва НВ, Кузнецов АВ, Чапандзе ГН. Эксперименталь- но-клиническое обоснование применения биодегра- дируемых имплантатов в хирургическом лечении поражений периферических нервов. Вопросы нейрохирургии им. Н.Н. Бурденко. 2010; 3: 15–18. Fe- djakov AG, Dreval' ON, Sevast'janov VI, Perova NV, Kuznecov AV, Chapandze GN. Jeksperimental'no-kli- nicheskoe obosnovanie primenenija biodegradiruemyh implantatov v hirurgicheskom lechenii porazhenij peri- fericheskih nervov. Voprosy nejrohirurgii im. N.N. Bur- denko. 2010; 3: 15–18 [In Russ].
Farrell E, O'Brien FJ, Doyle P, Fischer J, Yannas I, Harley BA et al. A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng. 2006; 12 (3): 459–468. PMID: 16579679.
Cheng NC, Estes BT, Awad HA, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng. Part A. 2009; 15 (2): 231–241. doi: 10.1089.
Sutherland AJ, Converse GL, Hopkins RA, Detamo- re MS. The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Adv. Health Mater. 2015; 4 (1): 29–39. doi: 10.1002.
Ye K, Felimban R, Moulton SE, Wallace GG, Di Bella C, Traianedes K et al. Bioengineering of articular cartila- ge: past, present and future. Regen. Med. 2013; 8 (3): 333–349. doi: 10.2217.
Williams RJ, Niederauer GG. Articular Cartilage Resur- facing Using Synthetic Resorbable Scaffolds in book: Cartilage repair strategies, edited by Williams R.J., Hu- mana Press, Totowa, New Jersey, 2007; 115–136.
Ahmed TA, Hincke MT. Mesenchymal stem cell-based tissue engineering strategies for repair of articular carti- lage. Histol. Histopathol. 2014; 29 (6): 669–689. PMID: 24452855.
Nava MM, Draghi L, Giordano C, Pietrabissa R. The effect of scaffold pore size in cartilage tissue enginee- ring. J. Appl. Biomater. Funct. Mater. 2016; 14 (3): e223–е229. doi: 10.5301.
Danisovic L, Varga I, Polak. Growth factors and chond- rogenic differentiation of mesenchymal stem cells. Tis- sue Cell. 2012; 44: 69–73. doi: 10.1016.
Indrawattana N, Chen G, Tadokoro M, Shann LH, Oh- gushi H, Tateishi T et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem. Biophys. Res. Commun. 2004; 320: 914–919. PMID: 15240135.
Surguchenko VA, Ponomareva AS, Kirsanova LA, Ska- leckij NN, Sevastianov VI. The cell-engineered cons- truct of cartilage on the basis of biopolymer hydrogel matrix and human adipose tissue-derived mesenchymal stromal cells (in vitro study). J. Biomed. Mater. Res. 2015; 103A (2): 463–470.
Севастьянов ВИ. Технологии тканевой инженерии и регенеративной медицины. Вестник трансплан- тологии и искусственных органов. 2014; 16 (3): 93–108. Sevast'yanov VI. Tekhnologii tkanevoj inzhe- nerii i regenerativnoj mediciny. Vestnik transplantologii i iskusstvennyh organov. 2014; 16 (3): 93–108.
Севастьянов ВИ, Духина ГА, Пономарева АС, Кир- санова ЛА, Перова НВ, Скалецкий НН. Биомедицин- ский клеточный продукт для регенерации суставно- го хряща: биосовместимые и гистоморфологические свойства (экспериментальная модель подкожной имплантации). Перспективные материалы. 2014; 10: 28–39. Sevast'yanov VI, Duhina GA, Ponomare- va AS, Kirsanova LA, Perova NV, Skaleckij NN. Biome- dicinskij kletochnyj produkt dlya regeneracii sustavno- go hryashcha: biosovmestimye i gistomorfologicheskie svojstva (ehksperimental'naya model' podkozhnoj im- plantacii). Perspektivnye materialy. 2014; 10: 28–39.
Huey DJ, Hu JC, Athanasiou KA. Unlike bone, carti- lage regeneration remains elusive. Science. 2012; 338: 917–921. doi: 10.1126.
Makris EA, Hu JC, Athanasiou KA. Hypoxia-induced collagen crosslinking as a mechanism for enhancing mechanical properties of engineered articular cartila- ge. Osteoarthritis Cartilage. 2013; 21: 634–641. doi: 10.1016.
Makris EA, MacBarb RF, Responte DJ, Hu JC, Athana- siou KA. A copper sulfate and hydroxylysine treatment regimen for enhancing collagen cross-linking and bio- mechanical properties in engineered neocartilage. FA- SEB J. 2013; 27: 2421–2430. doi: 10.1096.
Gunja NJ, Uthamanthil RK, Athanasiou KA. Effects of TGF-β1 and hydrostatic pressure on meniscus cell- seeded scaffolds. Biomaterials. 2009; 30: 565–573. doi: 10.1016.
Makris EA, MacBarb RF, Paschos NK, Hu JC, Athana- siou KA. Combined use of chondroitinase ABC, TGF- β1, and collagen crosslinking agent lysyl oxidase to engineer functional neotissues for fibrocartilage repair. Biomaterials. 2014; 35: 6787–6796. doi: 10.1016.
Mahmoudifar N, Doran PM. Effect of seeding and bio- reactor culture conditions on the development of human tissue-engineered cartilage. Tissue Eng. 2006; 12 (6): 1675–1685. PMID: 16846362.
He B, Wu JP, Kirk TB, Carrino JA, Xiang C, Xu J. High- resolution measurements of the multilayer ultra-struc- ture of articular cartilage and their translational potenti- al. Arthritis Res. Ther. 2014; 16 (2): 205. doi: 10.1186.
Emin N, Koç A, Durkut S, Elçin AE, Elçin YM. Enginee- ring of rat articular cartilage on porous sponges: effects of tgf-beta 1 and microgravity bioreactor culture. Artif. Cells Blood Substit. Immobil. Biotechnol. 2008; 36 (2): 123–137. doi: 10.1080.
2. Gemmiti CV, Guldberg RE. Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage. Tissue Eng. 2006; 12 (3): 469–479. PMID: 16579680.
Darling EM, Athanasiou KA. Articular cartilage biore- actors and bioprocesses. Tissue Eng. 2003; 9 (1): 9–26. PMID: 12625950.
Schulz RM, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur. Biophys. J. 2007; 36 (4–5): 539–568. PMID: 17318529.
Guha Thakurta S, Kraft M, Viljoen HJ, Subramanian A. Enhanced depth-independent chondrocyte proliferation and phenotype maintenance in an ultrasound bioreac- tor and an assessment of ultrasound dampening in the scaffold. Acta Biomater. 2014; 10 (11): 4798–4810. doi: 10.1016.
Yu H, Kim J, H, Lewis M, Wall I. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. J. Tissue Eng. 2016; 7: 2041731415618342. doi: 10.1177.
Guha Thakurta S, Budhiraja G, Subramanian A. Growth factor and ultrasound-assisted bioreactor synergism for human mesenchymal stem cell chondrogenesis. J. Tis- sue Eng. 2015; 6: 1–13. doi: 10.1177.
Subramanian A, Turner JA, Budhiraja G. Ultrasonic bioreactor as a platform for studying cellular response. Tissue Eng. Part C Methods. 2013; 19: 244–255. doi: 10.1089.
Wang TW, Wu HC, Wang HY, Lin FH, Sun JS. Regula- tion of adult human mesenchymal stem cells into os- teogenic and chondrogenic lineages by different biore- actor systems. J. Biomed. Mater. Res. A. 2009; 88 (4): 935–946. doi: 10.1002.
10. Brown AN, Kim BS, Alsberg E, Mooney DJ. Combining chondrocytes and smooth muscle cells to engineer hyb- rid soft tissue constructs. Tissue Eng. 2000; 6 (4): 297– 305. PMID: 10992427.
Hu JC, Athanasiou KA. Low-density cultures of bovi- ne chondrocytes: effects of scaffold material and cul- ture system. Biomaterials. 2005; 26 (14): 2001–2012. PMID: 15576174.
Janjanin S, Li WJ, Morgan MT, Shanti RM, Tuan RS. Mold-shaped, nanofiber scaffold-based cartilage engi- neering using human mesenchymal stem cells and bio- reactor. J. Surg. Res. 2008; 149 (1): 47–56. doi: 10.1016.
Mellor LF, Baker TL, Brown RJ, Catlin LW, Oxford JT. Optimal 3D culture of primary articular chondrocy- tes for use in the rotating wall vessel bioreactor. Avi- at. Space Environ. Med. 2014; 85 (8): 798–804. doi: 10.3357.
Augst A, Marolt D, Freed LE, Vepari C, Meinel L, Far- ley M et al. Effects of chondrogenic and osteogenic re- gulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors. J. R. Soc. Interface. 2008; 5 (25): 929–939. doi: 10.1098.
Kang H, Lu S, Peng J, Yang Q, Liu S, Zhang L, Huang J et al. Chondrogenic differentiation of human adipo- se derived stem cells using microcarrier and bioreactor combination technique. Mol. Med. Rep. 2015; 11 (2): 1195–1199. doi: 10.3892.
Li W, Jiang YJ, Tuan RS. Cell-nanofiber-based Carti- lage Tissue Engineering using Improved Cell Seeding, Growth Factor, and Bioreactor Technologies. Tissue Eng. Part A. 2008; 14 (5): 639–648. doi: 10.1089.
Akmal M, Anand A, Anand B, Wiseman M, Goodship AE, Bentley G. The culture of articular chondrocytes in hy- drogel constructs within a bioreactor enhances cell pro- liferation and matrix synthesis. J. Bone Joint Surg. Br. 2006; 88 (4): 544–553.
Chang CH, Lin FH, Lin CC, Chou CH, Liu HC. Cartila- ge tissue engineering on the surface of a novel gelatin- calcium-phosphate biphasic scaffold in a double-cham- ber bioreactor. J. Biomed. Mater. Res. B Appl. Biomater. 2004; 71 (2): 313–321. PMID: 15386400.
Chen T, Buckley M, Cohen I, Bonassar L, Awad HA. In- sights into interstitial flow, shear stress, and mass trans- port effects on ECM heterogeneity in bioreactor-culti- vated engineered cartilage hydrogels. Biomech. Model Mechanobiol. 2012; 11 (5): 689–702. doi: 10.1007.
Mizuno S, Allemann F, Glowacki J. Effects of medium perfusion on matrix production by bovine chondrocytes in three-dimensional collagen sponges. J. Biomed. Ma- ter. Res. 2001; 56 (3): 368–375. PMID: 11372054.
Sun S, Ren Q, Wang D, Zhang L, Wu S, Sun XT. Repai- ring cartilage defects using chondrocyte and osteoblast composites developed using a bioreactor. Chin. Med. J. (Engl.). 2011; 124 (5): 758–763. PMID: 21518572.
Lio J, Guo X, Grande-Allen KJ, Kasper FK, Mikos AG. Bioactive polymer/extracellular matrix scaffolds fa- bricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials. 2010; 31 (34): 8911– 8920. doi: 10.1016.
Pazzano D, Mercier KA, Moran JM, Fong SS, DiBia- sio DD, Rulfs JX, Kohles SS, Bonassar LJ. Comparison of chondrogenesis in static and perfused bioreactor cul- ture. Biotechnol. Prog. 2000; 16 (5): 893–896. PMID: 11027186.
Davisson T, Sah RL, Ratcliffe A. Perfusion increases cell content and matrix synthesis in chondrocyte three- dimensional cultures. Tissue Eng. 2002; 8 (5): 807–816. PMID: 12459059.
Tran SC, Cooley AJ, Elder SH. Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold- free cartilage. Biotechnol. Bioeng. 2011; 108 (6): 1421– 1429. doi: 10.1002.
Santoro R, Olivares AL, Brans G, Wirz D, Longinotti C, Lacroix D et al. Bioreactor based engineering of large- scale human cartilage grafts for joint resurfacing. Bio- materials. 2010; 31 (34): 8946–8952. doi: 10.1016.
Mahmoudifar N, Doran PM. Tissue engineering of hu- man cartilage in bioreactors using single and composite cell-seeded scaffolds. Biotechnol. Bioeng. 2005; 91 (3): 338–355. PMID: 15959891.
Millward-Sadler SJ, Wright MO, Davies LW, Nuki G, Salter DM. Mechanotransduction via integrins and in- terleukin-4 results in altered aggrecan and matrix me- talloproteinase 3 gene expression in normal, but not osteoarthritic, human articular chondrocytes. Arthritis Rheum. 2000; 43 (9): 2091–2099. PMID: 11014361.
Fukuda K, Asada S, Kumano F, Saitoh M, Otani K, Ta- naka S. Cyclic tensile stretch on bovine articular chon- drocytes inhibits protein kinase C activity. J. Lab. Clin. Med. 1997; 130 (2): 209–215. PMID: 9280149.
Domm C, Fay J, Schünke M, Kurz B. Redifferentiati- on of dedifferentiated joint cartilage cells in alginate culture. Effect of intermittent hydrostatic pressure and low oxygen partial pressure. Orthopade. 2000; 29 (2): 91–99. PMID: 10743629.
Angele P, Schumann D, Angele M, Kinner B, Englert C, Hente R et al. Cyclic, mechanical compression enhan- ces chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology. 2004; 41 (3–4): 335–346. PMID: 15299266.
Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A. Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J. Orthop. Res. 2002; 20 (4): 842–848. PMID: 12168676.
Hunter CJ, Imler SM, Malaviya P, Nerem RM, Leven- ston ME. Mechanical compression alters gene expres- sion and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials. 2002; 23 (4): 1249–1259. PMID: 11791929.
Hunter CJ, Mouw JK, Levenston ME. Dynamic com- pression of chondrocyte-seeded fibrin gels: effects on matrix accumulation and mechanical stiffness. Os- teoarthritis Cartilage. 2004; 12 (2): 117–130. PMID: 11791929.
Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with de- formational loading. Osteoarthritis Cartilage. 2003; 11 (12): 879–890. PMID: 14629964.
Déarteau O, Jakob M, Schäfer D, Heberer M, Mar- tin I. Development and validation of a bioreactor for physical stimulation of engineered cartilage. Biorheolo- gy. 2003; 40 (1–3): 331–336. PMID: 12454423.
Wang N, Grad S, Stoddart MJ, Niemeyer P, Südkamp NP, Pestka J et al. Bioreactor-Induced Chondrocyte Matura- tion Is Dependent on Cell Passage and Onset of Loa- ding. Cartilage. 2013; 4 (2): 165–176. doi: 10.1177.
Gharravi AM, Orazizadeh M, Ansari-Asl K, Banoni S, Izadi S, Hashemitabar M. Design and fabrication of anatomical bioreactor systems containing alginate scaf- folds for cartilage tissue engineering. Avicenna J. Med. Biotechnol. 2012; 4 (2): 65–74. PMID: 23408660.
Kisiday JD, Jin M, DiMicco MA, Kurz B, Grodzinsky AJ. Effects of dynamic compressive loading on chondrocy- te biosynthesis in self-assembling peptide scaffolds. J. Biomech. 2004; 37 (5): 595–604. PMID: 15046988.
Mizuno S, Tateishi T, Ushida T, Glowacki J. Hydrosta- tic fluid pressure enhances matrix synthesis and accu- mulation by bovine chondrocytes in three-dimensional culture. J. Cell Physiol. 2002; 193 (3): 319–327. PMID: 12384984.
Heath CA. The effects of physical forces on cartilage tissue engineering. Biotechnol. Genet. Eng. Rev. 2000; 17: 533–551. PMID: 11255680.
Schulz RM, Wüstneck N, van Donkelaar CC, Shel- ton JC, Bader A. Development and validation of a novel bioreactor system for load- and perfusion-controlled tis- sue engineering of chondrocyte-constructs. Biotechnol. Bioeng. 2008; 101 (4): 714–728. doi: 10.1002.
Wang N, Chen J, Zhang G, Chai W. Chondrogenesis of passaged chondrocytes induced by different dynamic loads in bioreactor. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2013; 27 (7): 786–792. PMID: 24063164.
Tarng YW, Huang BF, Su FC. A novel recirculating flow- perfusion bioreactor for periosteal chondrogenesis. Int. Orthop. 2012; 36 (4): 863–868. doi: 10.1007.
Louw TM, Budhiraja G, Viljoen HJ. Mechanotransduc- tion of ultrasound is frequency dependent below the cavitation threshold. Ultrasound Med. Biol. 2013; 39: 1303–1319. doi: 10.1016.
Whitney NP, Lamb AC, Louw TM. Integrin-mediated mechanotransduction pathway of low-intensity conti- nuous ultrasound in human chondrocytes. Ultrasound Med. Biol. 2012; 38: 1734–1743. doi: 10.1016.
Klöckner W, Diederichs S, Büchs J. Orbitally shaken single-use bioreactors. Adv. Biochem. Eng. Biotechnol. 2014; 138: 45–60. doi: 10.1007.146-2.
Bouchet BY, Colón M, Polotsky A, Shikani AH, Hun- gerford DS, Frondoza CG. Beta-1 integrin expression by human nasal chondrocytes in microcarrier spinner culture. J. Biomed. Mater. Res. 2000; 52 (4): 716–724. PMID: 11033555.
Kuo CK, Li WJ, Mauck RL, Tuan RS. Cartilage tissue engineering: its potential and uses. Curr. Opin. Rheuma- tol. 2006; 18: 64. PMID: 16344621.
Lappa M. Organic tissues in rotating bioreactors: fluid- mechanical aspects, dynamic growth models, and mor- phological evolution. Biotechnol. Bioeng. 2003; 84: 518. PMID: 14574686.
Sacco R, Causin P, Zunino P, Raimondi MT. A multi- physics/multiscale 2D numerical simulation of scaffold- based cartilage regeneration under interstitial perfusion in a bioreactor. Biomech. Model Mechanobiol. 2011; 10 (4): 577–589. doi: 10.1007.
Khan AA, Surrao DC. The importance of bicarbonate and nonbicarbonate buffer systems in batch and conti- nuous flow bioreactors for articular cartilage tissue en- gineering. Tissue Eng. Part C Methods. 2012; 18 (5): 358–368. doi: 10.1089.
Forsey RW, Tare R, Oreffo RO, Chaudhuri JB. Perfusi- on bioreactor studies of chondrocyte growth in alginate- chitosan capsules. Biotechnol. Appl. Biochem. 2012; 59 (2): 142–152. doi: 10.1002.
Wendt D, Marsano A, Jakob M, Heberer M, Martin I. Oscillating perfusion of cell suspensions through three- dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol. Bioeng. 2003; 84 (2): 205– 214. PMID: 12966577.181/2.
Sun S, Ren Q, Wang D, Zhang L, Wu S, Sun XT. Repai- ring cartilage defects using chondrocyte and osteoblast composites developed using a bioreactor. Chin. Med. J. (Engl.). 2011; 124 (5): 758–763. PMID: 21518572.
Heath CA. The effects of physical forces on cartilage tissue engineering. Biotechnol. Genet. Eng. Rev. 2000; 17: 533–551. PMID: 11255680.
Schulz RM, Wüstneck N, van Donkelaar CC, Shel- ton JC, Bader A. Development and validation of a novel bioreactor system for load- and perfusion-controlled tis- sue engineering of chondrocyte-constructs. Biotechnol. Bioeng. 2008; 101 (4): 714–728. doi: 10.1002.
Wang N, Chen J, Zhang G, Chai W. Chondrogenesis of passaged chondrocytes induced by different dynamic loads in bioreactor. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2013; 27 (7): 786–792. PMID: 24063164.
Tarng YW, Huang BF, Su FC. A novel recirculating flow- perfusion bioreactor for periosteal chondrogenesis. Int. Orthop. 2012; 36 (4): 863–868. doi: 10.1007.
Louw TM, Budhiraja G, Viljoen HJ. Mechanotransduc- tion of ultrasound is frequency dependent below the cavitation threshold. Ultrasound Med. Biol. 2013; 39: 1303–1319. doi: 10.1016.
Whitney NP, Lamb AC, Louw TM. Integrin-mediated mechanotransduction pathway of low-intensity conti- nuous ultrasound in human condrocytes. Ultrasound Med. Biol. 2012; 38: 1734–1743. doi: 10.1016.
Klöckner W, Diederichs S, Büchs J. Orbitally shaken single-use bioreactors. Adv. Biochem. Eng. Biotechnol. 2014; 138: 45–60. doi: 10.1007.146-2.
Bouchet BY, Colón M, Polotsky A, Shikani AH, Hun- gerford DS, Frondoza CG. Beta-1 integrin expression by human nasal chondrocytes in microcarrier spinner culture. J. Biomed. Mater. Res. 2000; 52 (4): 716–724. PMID: 11033555.
Kuo CK, Li WJ, Mauck RL, Tuan RS. Cartilage tissue engineering: its potential and uses. Curr. Opin. Rheuma- tol. 2006; 18: 64. PMID: 16344621.
Lappa M. Organic tissues in rotating bioreactors: fluid- mechanical aspects, dynamic growth models, and mor- phological evolution. Biotechnol. Bioeng. 2003; 84: 518. PMID: 14574686.
Sacco R, Causin P, Zunino P, Raimondi MT. A multi- physics/multiscale 2D numerical simulation of scaffold- based cartilage regeneration under interstitial perfusion in a bioreactor. Biomech. Model Mechanobiol. 2011; 10 (4): 577–589. doi: 10.1007.
Khan AA, Surrao DC. The importance of bicarbonate and nonbicarbonate buffer systems in batch and conti- nuous flow bioreactors for articular cartilage tissue en- gineering. Tissue Eng. Part C Methods. 2012; 18 (5): 358–368. doi: 10.1089.
Forsey RW, Tare R, Oreffo RO, Chaudhuri JB. Perfusi- on bioreactor studies of chondrocyte growth in alginate- chitosan capsules. Biotechnol. Appl. Biochem. 2012; 59 (2): 142–152. doi: 10.1002.
Wendt D, Marsano A, Jakob M, Heberer M, Martin I. Oscillating perfusion of cell suspensions through three- dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol. Bioeng. 2003; 84 (2): 205– 214. PMID: 12966577.181/2.
Sun S, Ren Q, Wang D, Zhang L, Wu S, Sun XT. Repai- ring cartilage defects using chondrocyte and osteoblast composites developed using a bioreactor. Chin. Med. J. (Engl.). 2011; 124 (5): 758–763. PMID: 21518572.
De Maria C, Giusti S, Mazzei D, Crawford A, Ahlu- walia A. Squeeze pressure bioreactor: a hydrodyna- mic bioreactor for noncontact stimulation of cartilage constructs. Tissue Eng. Part C Methods. 2011; 17 (7): 757–764. doi: 10.1089.
Lee CR, Grodzinsky AJ, Hsu HP, Spector M. Effects of a cultured autologous chondrocyte-seeded type II col- lagen scaffold on the healing of a chondral defect in a canine model. J. Orthop. Res. 2003; 21 (2): 272–281. PMID: 12568959.
Graff RD, Lazarowski ER, Banes AJ, Lee GM. ATP re- lease by mechanically loaded porcine chondrons in pel- let culture. Arthritis Rheum. 2000; 43 (7): 1571–1579. PMID: 10902762.
Mauck RL, Seyhan SL, Ateshian GA, Hung CT. Influ- ence of seeding density and dynamic deformational loa- ding on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann. Biomed. Eng. 2002; 30 (8): 1046–1056. PMID: 12449765.
Hung CT, Mauck RL, Wang CC, Lima EG, Ateshian GA. A paradigm for functional tissue engineering of articu- lar cartilage via applied physiologic deformational loa- ding. Ann. Biomed. Eng. 2004; 32 (1): 35–49. PMID: 14964720.
Kisiday JD, Jin M, DiMicco MA, Kurz B, Grodzinsky AJ. Effects of dynamic compressive loading on chondrocy- te biosynthesis in self-assembling peptide scaffolds. J. Biomech. 2004; 37 (5): 595–604. PMID: 15046988.
Jin M, Frank EH, Quinn TM, Hunziker EB, Grodzins- ky AJ. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch. Biochem. Biophys. 2001; 395 (1): 41–48. PMID: 11673864.
Laganà K, Moretti M, Dubini G, Raimondi MT. A new bioreactor for the controlled application of complex me- chanical stimuli for cartilage tissue engineering. Proc. Inst. Mech. Eng. H. 2008; 222 (5): 705–715. PMID: 18756689.
Chen HC, Lee HP, Sung ML, Liao CJ, Hu YC. A novel rotating-shaft bioreactor for two-phase cultivation of tissue-engineered cartilage. Biotechnol. Prog. 2004; 20 (6): 1802–1809. PMID: 15575715.
Lu CH, Lin KJ, Chiu HY, Chen CY, Yen TC, Hwang SM et al. Improved chondrogenesis and engineered cartila- ge formation from TGF-β3-expressing adipose-derived stem cells cultured in the rotating-shaft bioreactor. Tis- sue Eng. Part A. 2012; 18 (19–20): 2114–2124. doi: 10.1089.
Yusoff N, Abu Osman NA, Pingguan-Murphy B. Design and validation of a bi-axial loading bioreactor for me- chanical stimulation of engineered cartilage. Med. Eng. Phys. 2011; 33 (6): 782–788. doi: 10.1016.
Camarero-Espinosa S, Rothen-Rutishauser B, Fos- ter EJ, Weder C. Articular cartilage: from formation to tissue engineering. Biomater. Sci. 2016; 26; 4 (5): 734– 767. doi: 10.1039.
Stoffel M, Yi JH, Weichert D, Zhou B, Nebelung S, Mül- ler-Rath R et al. Bioreactor cultivation and remodelling simulation for cartilage replacement material. Med. Eng. Phys. 2012; 34 (1): 56–63. doi: 10.1016.
Spitters TW, Leijten JC, Deus FD, Costa IB, van Apel- doorn AA, van Blitterswijk CA et al. A dual flow bio- reactor with controlled mechanical stimulation for car- tilage tissue engineering. Tissue Eng. Part C Methods. 2013; 19 (10): 774–783. doi: 10.1089.
Ye G, Zhang F, Shi H. Research progress of bioreac- tor biophysical factors in cartilage tissue engineering. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2013; 27 (7): 810–813. PMID: 24063168.
Ficklin TP, Davol A, Klisch SM. Simulating the growth of articular cartilage explants in a permeation bioreactor to aid in experimental protocol design. J. Biomech. Eng. 2009; 131 (4): 041008. doi: 10.1115.
Kallemeyn NA, Grosland NM, Pedersen DR, Martin JA, Brown TD. Loading and boundary condition influences in a poroelastic finite element model of cartilage stres- ses in a triaxial compression bioreactor. Iowa Orthop. J. 2006; 26: 5–16. PMID: 16789442.
Hussein MA, Esterl S, Pörtner R, Wiegandt K, Becker T. On the lattice Boltzmann method simulation of a two- phase flow bioreactor for artificially grown cartila- ge cells. J. Biomech.; 2010, 41 (16): 3455–3461. doi: 10.1016.
Raimondi MT, Causin P, Mara A, Nava M, Laganà M, Sacco R. Breakthroughs in computational modeling of cartilage regeneration in perfused bioreactors. IEEE Trans. Biomed. Eng. 2011; 58 (12): 3496–3499. doi: 10.1109.
Nikolaev NI, Obradovic B, Versteeg HK, Lemon G, Wil- liams DJ. A validated model of GAG deposition, cell distribution, and growth of tissue engineered cartilage cultured in a rotating bioreactor. Biotechnol. Bioeng. 2010; 105 (4): 842–853. doi: 10.1002.
Shakhawath Hossain M, Bergstrom DJ, Chen XB. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow per- fusion bioreactor. Biotechnol. Bioeng. 2015; 112 (12): 2601–2610. doi: 10.1002.
Cinbiz MN, Tığli RS, Beşkardeş IG, Gümüşderelioğlu M, Colak U. Computational fluid dynamics modeling of momentum transport in rotating wall perfused bioreac- tor for cartilage tissue engineering. J. Biotechnol. 2010; 150 (3): 389–395. doi: 10.1016.
Mastbergen SC, Saris DB, Lafeber FP. Functional arti- cular cartilage repair: here, near, or is the best approach not yet clear? Nat. Rev. Rheumatol. 2013; 9 (5): 277– 290. doi: 10.1038.